• 0 5391 6310 , 0 5391 6320
  • acquisition_library@mfu.ac.th
  • BOOK
  • E-BOOK
  • RECOMMEND OTHER BOOKS
  • SATISFACTION ASSESSMENT FORM
        
  • Log in
  • HOME
  • CATEGORY
    • Agro-Industry
    • Anti Aging and Regenerative Medicine
    • Applied Digital Technology
    • Cosmetic Science
    • Dentistry
    • General Books
    • Health Science
    • Integrative Medicine
    • Law
    • Liberal Arts
    • Management
    • Medicine
    • Nursing
    • Science
    • Sinology
    • Social Innovations
  • BOOKFAIR WEBSITE
  • MANUAL

Category

Agro-Industry

Anti Aging and Regenerative Medicine

Applied Digital Technology

Cosmetic Science

Dentistry

Health Science

Integrative Medicine

Law

Liberal Arts

Management

Medicine

Nursing

Science

Sinology

Social Innovations

General Books

Book

Bayesian Inference

ISBN : 9781032118093

Author : Silvelyn Zwanzig

Publisher : Routledge

Year : 2024

Language : English

Type : Book

Description : Bayesian Inference: Theory, Methods, Computations provides a comprehensive coverage of the fundamentals of Bayesian inference from all important perspectives, namely theory, methods and computations. All theoretical results are presented as formal theorems, corollaries, lemmas etc., furnished with detailed proofs. The theoretical ideas are explained in simple and easily comprehensible forms, supplemented with several examples. A clear reasoning on the validity, usefulness, and pragmatic approach of the Bayesian methods is provided. A large number of examples and exercises, and solutions to all exercises, are provided to help students understand the concepts through ample practice. The book is primarily aimed at first or second semester master students, where parts of the book can also be used at Ph.D. level or by research community at large. The emphasis is on exact cases. However, to gain further insight into the core concepts, an entire chapter is dedicated to computer intensive techniques. Selected chapters and sections of the book can be used for a one-semester course on Bayesian statistics. Key Features: Explains basic ideas of Bayesian statistical inference in an easily comprehensible form Illustrates main ideas through sketches and plots Contains large number of examples and exercises Provides solutions to all exercises Includes R codes Silvelyn Zwanzig is a Professor for Mathematical Statistics at Uppsala University. She studied Mathematics at the Humboldt University of Berlin. Before coming to Sweden, she was Assistant Professor at the University of Hamburg in Germany. She received her Ph.D. in Mathematics at the Academy of Sciences of the GDR. She has taught Statistics to undergraduate and graduate students since 1991. Her research interests include theoretical statistics and computer-intensive methods. Rauf Ahmad is Associate Professor at the Department of Statistics, Uppsala University. He did his Ph.D. at the University of Göttingen, Germany. Before joining Uppsala University, he worked at the Division of Mathematical Statistics, Department of Mathematics, Linköping University, and at Biometry Division, Swedish University of Agricultural Sciences, Uppsala. He has taught Statistics to undergraduate and graduate students since 1995. His research interests include high-dimensional inference, mathematical statistics, and U-statistics.

Please register to recommend this book to the library.

RECOMMENDED BOOKS

Berry Fruits : Bioactives, Health Effects and Processing

Asli Can Karaca

  • Detail

Vegetation and Climate

Siegmar-W. Breckle

  • Detail

IoT and AI in Agriculture : Smart Automation Systems for increasing Agricultural Productivity to Achieve SDGs and Society 5.0

Tofael Ahamed

  • Detail

Principles and Practice of Emergency Research Response

Robert A. Sorenson

  • Detail

Handbook of Medicinal Plants of the World for Aging

Christophe Wiart

  • Detail

Managing Soil Drought

Rattan Lal

  • Detail

Diabetes for Dummies

Simon Poole

  • Detail

Advanced Practice Nurse Networking to Enhance Global Health

Melanie Rogers

  • Detail

Learning Reources and Education Media Centre - Mae Fah Luang University